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U N I Q U E  F E A T U R E S  O F  T H E  A E R O D Y N A M I C S  P R O B L E M S  

F O R  A W I N G  O F  F I N I T E  SPAN 

N. F. Vorob'ev UDC 533.69 

In linear formulation, the problem of passage of a nonviscous supersonic flow over a thin slightly curved wing of finite 
span reduces to solution of a wave equation for the velocity potential with time-oriented data on the base plane and the main 

surface characteristic. Use of Volterra representation for the wave equation solution in this case of specifying initial data then 
allows us to choose as the defining parameter in the base plane either the exit derivative-wing geometry (direct aerodynamics 

problem) or the wing load function (converse aerodynamics problem). In addition, the Volterra expression establishes a 

relationship between the solutions of these problems, eliminating the ambiguity of the converse problem solution [1]. 
The velocity potential in the direct and converse problems can be written in the form of double integrals, the integrands 

of which contain singularities. When finding the flow gas dynamics parameters (derivatives of the velocity potential) the degree 

of the integrand singularities increases, so that at times it is impossible to perform formal differentiation operations within the 
framework of finite functions, and sometimes differentiation leads to the appearance of singularities for which the integrals 

become divergent. Often the approach of recognizing the existence of the integrals in the Adamar sense [2] is used. Introduction 
of such symbolism causes not only complications in realizing solution algorithms, but sometimes demands justification of 

physically absurd results. In wing theory problems this means acceptance of discontinuities in the gas dynamic parameters upon 
transition from the disturbed region to the wing surface. However for exact consideration of the character of the integrand 

singularities, as well as imposition of certain smoothness conditions on the problem's defining parameters, it is possible to 
represent the flow gas dynamic parameters within the class of finite functions on the wing surface itself. In this study that 

principal proposition will be illustrated with solutions of the direct and converse aerodynamics problems for a wing with 

completely supersonic leading edges. In general, the problems of flow over a finite span wing with partially infrasonic leading 
edges can be formulated-immediately in terms of direct and converse aerodynamics problems, and the problems of operations 
with integrals remains. Moreover, it is necessary to solve singular integral equations. Exact solutions for problems of flow over 

finite span wings with infrasonic edges are known, reducing to an integral equation with Abel integrand [1, 3, 4], including 
a solution in the class of finite function [5]. 

1. For passage of an ultrasonic flow (M > 1) over bodies with a spatial configuration which only slightly perturbs the 
incident flow, the gas dynamics equations can be reduced to a wave equation for the velocity potential [1] 

% - r  
(1.1) 

where the direction of the x-axis of a rectangular Cartesian coordinate system, fixed to the body, coincides with the flow 
direction at infinity (Fig. 1). 

We will consider problems of flow over a thin slightly curved wing, the mean surface of which differs little from some 

plane parallel to the incident flow velocity. We will term this plane the base plane and transfer boundary conditions from the 
wing surface to that base plane S(~ = 0). The region disturbed by the wing is located within the surface F O, which is the 
envelope of characteristic cones with apices on the supersonic portion of the wing's leading edge. The surface limited by the 

region of dependence of the point M(x, y, z) above the wing consists of a portion of the surface of the characteristic cone F 
with apex at the point M before its intersection with the main characteristic surface F o and the base plane S with the portions 

of F 0 and S cut by the cone F. 
Using the Ostrogradskii-Gauss formula, we can obtain a representation of the solution of wave equation (1.1) in 

Volterra form [1.6]. Then if for the known solution of the wave equation we choose the Volterra function 
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. ,  = f ~ , d ~  = l n { l ( x  - ~ )  - r l / q ( y  - ~)2 + ( z  - ~)2} ,  

~, = 1 / r ,  r = ~ / ( x  - ~)~ - [ ( y  - r/) 2 + ( z  - ~ ) 2 1 ,  (1.2) 

then in the Ostrogradski i -Gauss  expression the integral over the surface 1" vanishes. And if we assume that on the main 

characteristic surface I, It0 = 0, the Volterra expression takes on the form 

1 a 
a,(~ = ~ ~ f f (,,,,r,, - ,t,,,,',)as. (1.3) 

$ 

Here s is the region of dependence of the point M on the base plane S(rl = 0); 

~1,-o a,,, . ~  - Z;) = ~l , , -o - - - f -~a~+y  !,,-o = - , " l ( , -  Cf + / i  (1.4) 

is the Volterra conormal derivative function; then with accuracy to second order terms in Eq. (1.3) the conormal derivative 

q~'nlS can be replaced by the normal derivative q"nlS" 
Equation (1.3) represents the perturbation potential in terms of the value of the potential ,I, Is and the normal derivative 

'I"nl s on the base plane S(r/ = 0) of a time-oriented type. On the time-oriented surface a dependence exists between the 

potential ,I, and its normal derivative ~'n,  defined in the general case of a cylindrical base surface by an integrodifferential 

relationship which can be obtained from the Volterra expression upon the limiting transition of the point M to the base surface. 
In the current case of flow over a thin wing, where the base surface is the plane r/ = 0, according to Eqs. (I .2), (1.4) we have 
the equalities 

, < x ,  y ,  z ) l , . o  = ~ x ,  - y ,  ~ ) 1 , . o ,  , ,~ (x ,  y ,  , ) 1 , . o  = - , , ,~x ,  - y ,  : 0 t , . o .  (1,5) 

With consideration of Eq. (1.5) by the method of compensating singularities [1] we can exclude from Eq. (1.3) either the term 

dependent on the pgtential value in the plane ~7 = 0, thereupon representing the potential at the point M(x, y, z) in terms of 
the normal derivative of the velocity potential: 

1 ~ , ( 1 . 6 )  
,t,~(M) = -~ ~ f f ,t,, f ~a, ds, 

a 

or the term dependent on the normal derivative of the potential in the plane 77 = 0, thereupon writing the potential at M(x, y, 
z) in terms of  the velocity potential itself: 

i a f f .  f ~ d~as. ( 1 . 7 )  
s 

The solutions of the wing overflow problems, Eqs. (1.6), (1.7) have been given in the form of integrodifferential 

operators. To differentiate the integral operators with variable limits with respect to x, we must consider singularities of the 
integrands. Thus, in Eq. (1.7), due to a singularity on the line r = 0, direct differentiation is impossible, and to reduce the 
degree of the singularity we must perform a preliminary integration over the variable ~, which requires imposition of an 

additional condition on the smoothness of the defining parameter I,, i.e., existence of the derivative I,'~. After differentiating 

with respect to x, with consideration of the integrand singularities and reduction of the velocity potential on the boundary with 
the undisturbed region to zero, Eqs. (1.6), (1.7) take on the form [1] 

l , t ,t,;(~, t~) 
,t,, = - -~ f f Cj,  ds = - ~ f f ,. ds; ( 1 . 8 )  

$ S 

f ,l,;(~. r (x - ~) ,t,~ =. .~ f f ,t, ~ f o~ aC as = .~ f ,-~ - -~ 7 + N a" (1.9) 
x 

The potential <I, 1 defines the flow field in the perturbed region in terms of the value of the derivative ~',7 in the base 
plane and is the solution of the direct problem. The potential 0 2 defines the flow field in terms of the derivative q,'~ in the base 
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Fig. 1 

plane. A linearized Bernoulli equation gives the following relationship between the derivative O'~ and the pressure drop in the 

base plane: 

O~1~. o = ap, Ap = lpl~._o - pl~.§ 

Here u=,  Po. are the velocity and density of the undisturbed flow. Equation (1.9) shows the solution of the inverse point - -  

the geometric calculation. According to Eqs. (1.3), (1.6), (1.7) �9 = (01 + 02)/2. And since the disturbance consists of one 

and the same object, the wing, then the potentials O1, �9 2 define the same field in different terms: �9 = �9 1 = 02. The potential 

0 2 of the converse problem corresponds to the potential 01 of the direct problem, i.e., the wing configuration defining the 

flow 01 . 
In general, the solution of the converse problem is ambiguous. For example, on the base surface r/ = 0 to which 

conditions on the wing surface are transferred, let there be singularities ~ (a~lay)d~ (the integrand of the already known 

potential 02) and j (a~/ax)drl (integrand of the potential 03) with intensities c2( ~, ~), c3( ~, ~') respectively. The potentials of 

the disturbances created by these singularities will be given by the expressions 

O :  - ~) 
�9 2 - y f f  c=(r ;) r[(z - ;)2 + )3 1 ds; (1 .10)  

(x - r (1.11) 
% = y j ' J  ri(x - as ,  

where for case of calculation, without limiting generality we set the integration limits for the region of dependence s E r/ = 

0 of the point M(x, y, z) are limited by the line ~ = 0: 

O ~ ~ <- x - y ,  z - ~ / (x  - ~)2 - y~ ~ ~ <. z + V ( x  - ~)~ - y~.  

On the plane 7/ = 0 we introduce a new coordinate system, [3] ~ = ~, ~" = z - ~-(x - ~)2 _ y2 cos0, and rewrite Eqs. (1.10), 

(1.11) in the form 
x - y  ~t 

0 0 (X -- ~)2 C~2O + V 2 sin20 (1 .12)  

x - y  x 

O3 = Y f f c3(~. z - 4(x - q)" - / cosS~ (x - t) dOdr (1.13) 
o o (x - ~j):" sin20 + ~ co~"O 

If we differentiate potentials (1.12), (1.13) with respect to x and then transform to the limit as y ---, 0, then from the limiting 

expression we can establish the gas dynamic meaning of the singularities: Ce(~, ~') = c3(~, ~') = (1/rr)@'~ I,=0. The potential 

@ 3, just like the potential 02, is defined in terms of the load 0'~ I ,= o, but for an identically specified load upon the wing the 

flow parameters calculated with the potentials �9 2 and 03 will differ, including the wing geometry. 

Commencing from the equivalence of the potentials for direct and converse problems (O l = @ 2) we can establish a 
t relationship between the derivatives �9 ,I, 0 '~ in the base plane 7/ = 0. 

2. To find the gas dynamic flow parameters (velocities, pressures) from the expressions for �9 l, @ 2 we must 

differentiate the integral operators with respect to the variables x, y, z, while the integrands contain singularities of several 

varieties which prohibit direct differentiation. To eliminate these integrand singularities use has been made [I, 3] of the 

technique of preliminary integration by parts over one of the variables in the double integral operators, which requires 

imposition of additional conditions upon the smoothness of the defining parameters on the wing surface. Sometimes [2], while 
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performing differentiation operations incorrect within the framework of finite functions, the concept of the finite portion of the 

diverging integral has been introduced, making it possible to formally carry out the required operations, yet producing results 

the physical essence of which is absurd. Most often the appearance of the diverging integral itself is either a result of erroneous 
estimation of certain terms in the limiting transitions, or of neglect of a transition rule in the singular integrals dependent upon 

the parameter. In fact, the expressions for the potentials 4,1, 4,2 and the expressions for the gas dynamic flow parameters 

obtained by differentiation of ,I' 1, 4,2 are written in terms of the defining parameters on the wing surface in the disturbed space 
around the wing, outside the wing surface itself. Upon the limiting transition to the wing surface (y --, 0) it must be recalled 

that the rule 

lira f f(x, e)dx = f f(x, O)dx. (2.0) 
t..,,.O 

is not always satisfied for integrals dependent upon a parameter. Uncontrolled use of this rule for integrals, the integrands of 

which contain singularities, leads to the appearance of divergent integrals. Observation of the rules for differentiation of 

integrals with variable limits and the requirement of necessary smoothness of the defining parameters on the wings permit 

acquisition of flow gas dynamic parameter values within the class of finite function on the very wing surface (y ---, 0) as well. 

We will first demonstrate the invalidity of the widely used (see, for example, [2]) expression 

*,; I,-o = - r  I,.0 + ~ f f  '~r r ( x  - ~) 
, ( z  - r  q C x  - ~ ) z  _ ( z  - r  

(2.l) 

establishing a relationship between 4,'y and 4,'x in the base plane y = 0, commencing from solution of the converse problem 

4, 2 (see Eq. (1.9)). The integral standing on the right side of Eq. (2.1) diverges, but it has been suggested that it be treated 
in the Adamar sense. The appearance in Eq. (2. I) of a diverging integral is the result of  departure from the rules of 
differentiation for singular integrals with variable limits, which then spawns false estimates of the terms dropped in the limiting 

transition. 
We write the potential 4,2 (1.12) in the form 

o o (x - ~)~ cos20 + fl sin20 dOd~. 

(2.2) 

As was said above, without loss of generality as to the character of integral singularities, for the boundary of the perturbed 

region, we will take the line ~ = 0. 
Writing the potential ,I' 2 in the form of Eq. (2.2) allows direct differentiation with respect to y (and x as well). We 

will differentiate in sequence with respect to y, the cofactor y appearing before the integral, the integrand (first the core, then 

the cofactor ~ ' (~ ,  z - d(x  - ~)~ - y~ cosO)): 

~.~= 

+'~f f 
0 0 

(x - ~)2 cos20 + y2 sin20 
~Od~ 

o o l ( x  - ~)2 c~2e  + yZsin2el 2 d.Od~ 

+ :t "o"o ",/(x-l~)" - y~  [(x - ~)2r + yasin'91 dOa~. 

(2.3) 

Transforming in Eq. (2.3) from the integration variables ~, 0 to the variables ~, ~', we have 
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f <l>;(,~. tD (~ - f )  
") = - * " , ( =  - ") + -'- f ,-i77= : 77 z 

# 

+ ~ f f  o'~c (r r - ~s)(z - ~) . / I  

(2.4) 

where the limits of the region of s dependence are as follows: 

0 ~ f ~ x - y ,  ~ - ~ / ( x - f ) ~ - : ~ + ~ / ( x - f ) :  ~ .  

If in Eq. (2.4) we immediately take y = 0, we obtain Eq. (2.1) (derived by another manner in [2]). However the integral 
operators with co(actor ya dropped in Eq. (2.4) have singularities of such high order that not only do they do not vanish as 

y ---, 0, but remain comparable to the divergent integral in Eq. (2.1). 
To simplify establishing estimates, we will initially assume cb'~(~, ~') = fo(~) and carry out integration in Eq. (2.4). 

In consideration of the significance of this step we will describe the integration process in greater detail. 

The first integral operator is 

1 x 7  
.r, = ~ j / o ( ~ )  (~ - ~)J, aS, J~ = 

0 f ~1(~ - ~)l + y21 - ytx - ~) ' 

o 

The second integral operator is 

= e7  "#'2 7~ 
"~ $0 I(X-- f )2_ yl I 

"~ t ( x  - ~ ) z  _ # i l  

= f l(= - :;)~ + / i  ~ - 2.~ 

1=7 

o 

(2.5) 

i i ,  (2.6) 

The third integral operator J3, in light of the fact that we consider the case of constant loading over the extent ~'~(~, 

~') = f0(~) and ~"~, ~-(~, ~') = 0, is equal to zero. 
The first integral operator Jr, corresponding to the divergent integral from Eq. (2. I), tends to infinity as y --, 0, but 

is compensated by the operator J2, J1 + J2 = 0. 
Thus, according to Eq. (2.4), for ~'~(~, ~') = fo(~) and the leading edge of the dependence range ~ = 0 

~ ( x ,  y, ~) = - a , ' ( x  - y, o, O,  ~ ( x ,  y) = - ,t , ' ( .~ - y, o), 
~ ( x ,  o) = -a , ' (~ ,  o), 

which then corresponds to a planoparallel flow pattern. 

According to Eq. (2.1), in the case under consideration 

| x 

�9 j (~ ,  o ,  ; )  = - ~ - ( x ,  o, ;)  + ~ f io(r (~ - r  
0 

s+lx-~) 

= . -  _~,(. _ r ~,~x - ~). - ( .  - r = 2 r - ~)~ - ~ 
�9 (x - ~)' 
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With an accuracy to e 2, where e is the interval of the singularity in question (z - e <_ ~" -< z + e), we have J0 = 2/e(x - 

~). Then 
2 ~ 

~(x, o, ~) = -O'(x, o, z) + ~ f/o(~)~- 
o 

The first term on the right coincides with the first term of Eq. (2.4), and the second term rending to infinity as e ---> 0 "cries" 

to be dropped. This is not a compromise of linear theory, but the result of incorrect operations with the integrals. 

In the case of a linear law of loading change along the extent of the wing (I,'~(~, g') = fl(()~') the relationship between 
the first and second integral operators of Eq. (2.4) remains as before. 

The first integral operator is 

(J1 

o ~ _ ~ ' /  

is defined in Eq. (2.5)). Then 
x-y 

i, = :fl,(:)~. 
Yo 

The second integral operator is 

(J2 

'l'2 

is defined in Eq. (2.6)). Then 

Yo 

The third integral operator for I,"c, 1"(~, ~) = f1(~) has the form 

consequently, J3 = 0. 
In the case being considered of linear change in loading along the wing the operators J1, J2 also compensate each other: 

J1 + J2 = 0. Equation (2.4) gives the following relationship between the geometry and loading on the wing: qCy(X, 0, z) = - 

I,'x(X, 0, z). The local relationship can be explained by the antisymmetry of the load value relative to the plane g" = z. 

According to Eq. (2. t) for ~'~(~, ~') = fl(~)~" we obtain 

2z  x,. d o~(x, o, 0 = - . ' ( x ,  o, z) + ~ j.r~(~) ~. 
o 

n 
The law of loading change can be written in the quite general form q,'~(~, D = ~ fi(~)~ i or in a form convenient for 

evaluating the singularities of  the integral operators: i=0 

�9 - : z  - ( z -  - - r 
~mO i=O 

The behavior of the integral operators for i = 0, I was considered above. For i > 2 there appear in the numerators of the 

integral operators of Eq. (2.4) yet other terms of the form (z - ~,)i, which reduce the degree of integrand singularity [(z - 
~-)2 + y2] - l ,  [ ( z -  ~.)2 + y2]-2 as y --, 0, the integral operators becoming regular. 
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Thus, the relationship between the derivatives dp,y, (I),x, calculated on the basis of the potential (I) 2 is representable 

within the class of finite functions both within the flow and in the limiting transition to the wing. 

The possibility of obtaining a regular solution to the converse problem was analyzed by representing the potential ~2 
in the form of Eq. (2.2) to establish a relationship to the incorrect solution (2.1) from [2]. But, as has already been noted at 

the start of section 2, the rational method of finding derivatives of the potentials expressed in terms of singular integrals is 

reduction of the degree of singularity by preliminary integration by parts over one of the variables. This then permits 
differentiation of the integrals with variable limits without introducing any arbitrary differentiation symbolism which leads to 

nonphysical results. 

In [1] the integral operators for the potentials @I, @2 were subjected to preliminary integration by parts over the 

variable ~" as well as the variable ~, making it possible to differentiate the potential ,hi (solution of the direct problem) with 

respect to x or to differentiate the potential <I, 2 (solution of the converse problem) with respect to y. Meanwhile in performing 
the preliminary integration by parts it is necessary to impose additional conditions on the defining parameters @'~l ~=0, @'~1 ~=0 
the existence of the corresponding second derivatives @",r (I,"~r (I,"n~, @"~. 

The derivatives ,I,' ix, defined in the direct problem have the form 

,t,~x, y, z) = - % 0 ,  - y, 0, z) - ~ S % f ~; a~ 
co t )  .j ~ .1(~) 

$ 

1 

a,'d.~, y, =) = - �88 f {,t,; ~o l~.,,(r - -~ f f ,t,'j, ~e#,e;, 
COt> 

(2.7) 

(2.8) 

while the derivatives (I)'2y, defined in the converse problem appear as: 

,t,'~x, y, :) = -~,'(= - y, o, :) + -~ % f f o/  ~-/m 

'[ffF  ] 
r 

2 

Jr 

(2.9) 

(2. I O) 

Here s is the region of dependence of the point M(x, y, z); COD(~" = f(~), ~ = ~b(~')) is the boundary between the region of 
dependence and the unperturbed region (see Fig. 1). 

In expanded form the integrand of the operators in Eqs. (2.7)-(2.10) can be written as follows: 

rl(---x-/j)-'q y21 ' (2.11) 

~o = r-~; (2 .12)  

f S  - - - , d~arc = rl(: - C) 2 + y2l[(x --' ~)a _ y21 , (2.13) 

y2(x _ ~)2 _ r2(z _ C)2 (2 .14)  
f f  a~ a~a~ = r[(z - -  ~)2 + yz]2 

All these integrands have a singularity at r = 0. Upon transition of the point M(x, y, z) to the base plane (y = 0) the line ~" = 
z and the point ~ = x become singular; in some cases the singularity is such that the integral is divergent. But this does not 
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imply the absence of a solution in the ordinary meaning of that term. To prove the existence of a solution in this case, when 

calculating the integrals we must perform the limiting transition y ~ 0 after carrying out the integration. The integrands reflect 
the character of  the effect of  the hydrodynamic singularities ( t u r b u l e n t  sections, sources, disturbances of  more complex" 

character, etc.) on the point M(x, y, z) in the space outside the plane where the hydrodynamic singularities are located. Each 

hydrodynamic singularity has its own permissible path for transition of the point M(x, y, z) into the singularity plane. For 

certain singularities (sources) the order of the transition of point M into the perturbing plane and the order of integration in 
the double integral make no difference. For other types of singularities (turbulent sections) the result depends upon the order 

of integration of the double integral, while in the case of more complex disturbances it may also depend on the order of the 
limiting transition y ~ 0, i.e., before or after integration. 

Without loss of  generality we will analyze the singularities of the integral operators in Eqs. (2.7)-(2.10) for a wing 

where the boundary COD of the dependence region with the undisturbed flow region is given by the equation ~ = 0 (Fig. 1). 
According to Eq. (2.11) the integral operator from Eq. (2.7) in which the hydrodynamic singularity ~ (0,r is 

related to a turbulent segment in the direction of the ~'-axis can be described at y -- 0 in the following manner: 

z~(x-~) 

We will write the law for change in slope of the normal in the form of a series 

n 

i - O  ~-O 

u (when series in ~" are used to express the functions @ ~;, we use one and the same notation for the coefficients: fi(~j), gi(~))- 
Then at i = 0 

/o(') "'(jTf' (z - / ; )  d~d~ = 0; Y,o(x, O, z) = (x ~ }) r 
z-(x-  0 

while a t i  = 1 

/,(~) """-f~ [* - (z - . ) 1 ( ~  - r ~ a ~  ~ / t ( ~ ) ( x  - ~)a~.  
S . ( x ,  O, z) = o (/' - ' ~ ) . -  -f~ o 

For i _ 2 there appear in the inner integral over ~" terms with odd and even powers of the factor (z - ~'). Integrals with terms 
having an odd power of (z - ~ - ) 2 i + I  vanish, while after finding the integrand, terms with (z - ~ - ) 2 i + 2  vanish, while after 

finding the integrand, terms with a-(x - ~)2, have a cofactor (x - ~)-1 so that the singularity ~ in the external integral 
x 

vanishes and all J7i are proportional to the integral 7r i fi(~)(x - ~)d~. It can be shown that condition (2.0) is satisfied for JV- 
D 

The integral operator from Eq. (2.8), in which the hydrodynamic singularity r - I  is a supersonic source, has an 

integrable singularity, allowing change in the order of integration and use of  rule (2.0). 

The integrand of the operator from Eq. (2.9), in light of the fact that ~r - 'r - ~Pzz = 0 and Eq. (2.13) can be 

written as 

= . ( x  - O ( z  - C )  ( x  - ~ ) ( z  - r 
rl(z - ~)a + yl I - r l ( x  - ~)a _ y21 , 

(2.15) 

and is related to turbulent segments in the directions/~ and ~'. Singularities in the integral operator with integrand ~ (O~/Ox)d~" 

were analyzed above. A portion of the integral operator with integrand ~ (ar at y = 0 according to Eqs. (2.9), (2. I1). 

(2.13), (2.15) has the form 
x ~+(x-O 

,. ,, (x -~)  
1, (x ,  0,  z) = J r f~ r(, - C) z e a l .  

z - ( x - f )  
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n 
We write l,"~ r ~') = ~ ]  fi(()O" Then at i = O. 

i=O 
�9 ,*(j-o arc 

~ ( ~ ,  o,  0 = J " / o 0 ) ( ~  - 0 
o ,-c~-o ~(~ - ~') 

~ d ~  = O; 

a t i =  1, 

i , . o , - o  Iz  - (= - ~;)1 j" 
o : - ( x - ,O  o 

for i _> 2 the inner integrals over ~', aside from the terms 

,+(x-O d~ z+O,-O 
j"  ..Z~_~) __ 0 ' f a~ = ; ~ , � 9  

z- - z-fx-O 

will still have integrable terms of the type ~ [(z - ~')i/r]d~'. As for J7, rule (2.0) is valid for J9" 
The integral operator of Eq. (2.10) with integrand (2.14) for y = 0 on the line ~" = z has a nonintegrable singularity 

(z - ~-)-2: 

o, z) = i'- :•162 
0 

(2.16) 

which implies a nonphysical result-finite change in loading corresponds to infinite deformation of the wing surface. The 

integrand of the operator in Eq. (2.16) can be obtained from the integrand of the operator 

�9 . ~v~-7 x - ~  r y2(x _ ~)a _ r2(z _ r (2.17) 

: Y % 7 ;:r z_z~/~_y T 0 

by dropping terms therein with the cofactor y2 as y --, 0. 
Dropping of terms with y2 as y -* 0 before integration is carried out is impermissible since the term in the integrand 

of Eq. (2.17) with numerator y2(x - ~)2 would have a term with cofactor y-1.  Such a y - t  singularity also develops after 

integration in the term with numerator r2(z - ~-)2, appearing in operator (2.16). But in the given case of integration for y ;~ 

0 the terms with y -  1 singularities singularity from the numerator terms [y2(x - ~)2 _ r2(z _ ~-)2] cancel each other. No other 

singularities appear upon integration, the operator Jlo(X, 0, z) exists given the condition of finiteness of ,I,"~(~, ~') and 

lim Jlo(x, y, z) is a finite value. The procedure for calculating the double integrals from Eq. (2.17) is quite cumbersome, and 
y-,.o 
to prove the existence of Jlo(x, y, z) it is sufficient to carry out the former for ~"~(~,  ~') = const = c. In that case Jlo(x, y, 

z) = c~-x over the entire disturbed region, including y = 0. 

In Eq. (2.10), which defines ~'2y(X, y, z), in terms of load parameters along the wing, aside from the double integral 

of the operator Jm(x, y, z), there is a single integral along the contour COD(~ = 0), dependent on 

~'~(~, D: 

z§ ~V7--7 .G: - / ( ~  - r 
]Io(X,y, z) = f *',(0, ~)r[(z r d':;" (2.18) 

Z-- x '~ '~-  y T 

Here integration must be performed at y ;~ 0. After integration terms with the factor y -  I appear which cancel each other. The 

integral Jll0(x, y, z) exists, given finiteness of ,P'~(0, ~'). For proof it is sufficient to consider specification of a load on the 

wing in the form cI,'~(~, ~-) = Po + c~, then ,I,'~(0, ~'). The integral of Eq. (2.18) then has the form Jtlo(X, y, z) = p,:r over 

the entire disturbed region including y = 0. 
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Equation (2.10) in the given case of a boundary COD(~ = 0) for a load ~,'~ = P0 + c~ can be written in the form 

~'2y(x, y, z) = -(Po + cx), which corresponds to the physical solution of the problem for a wing of infinite span. For c = 
0 ~'2y(x, y, z) = -P0 is the solution of the problem for a planar plate. 

Thus, the Volterra solution makes possible establishment of an unambiguous correspondence between the direct and 

converse wing aerodynamics problems. The flow gas dynamic parameters in the direct and converse problems are representable 

in terms of the defining parameters on the wing surface within the class of finite functions, including the transition to the wing 

surface, thus establishing the relationship between the defining parameters (geometry and loading) on the wing surface. 
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